DYNALINE MAX 78 AND 99

Marlow's Dynaline Max takes the wire rope replacement concept of Dynaline a stage further by adding Marlow's "Max" super pre-stretching process. Dynaline Max offers much higher strength than a standard Marlow Winch Line rope. The higher break load for a given diameter offers a higher factor of safety or the possibilty to down size the rope, therby allowing a longer length to be fitted on the winch.

APPLICATIONS

MATERIAL
MANUFACTURED FROM DYNEEMA:

CONSTRUCTION

TWISTED FIBRE CONSTRUCTION: 12 STRAND BRAIDED CONSTRUCTION:

HEAT SET AND PRE-STRETCHED:

COATING OPTIONS MARLOW ARMOURCOAT:

Winching

HMPE (High-Modulus Polyethylene)
Very light weight $-8 x$ lighter than steel wire for a given strength
High strength - 70\% stronger than steel wire for a given diameter
Low stretch - see graph below
Good resistance to chemicals and UV
Zero water shrinkage
Low creep HMPE fibre

Improved abrasion resistance
Optimised pitch to yarn twist - improves strength \& longevity
Firmer rounder rope, aids handling
Easy to splice
Flexible product and easily handled
Torque balanced
Maximises strength/diameter ratio
Minimises elongation

Specially formulated polyurethane coating Improves abrasion resistance and durability Increases friction, aids handling \& splicing
Provides colour coding (black as standard, other colour options available on request)

0.97 (floats)

Excellent resistance to most chemicals (additional information available on request)
Very good
$140^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$ (exposure to temperatures over this will result in permanent strength loss)

TERMINATIONS

SPLICED EYE TERMINATION:

12 strand splice
An allowance of 60x rope diameter should be made for the overall length of the splice.
To optimise the efficiency of a soft eye splice (without a thimble), the angle formed at the neck of the splice should be 30° or less, meaning that when flat, the length of the eye must be $2.7 x$ the diameter of the object over which the splice will be used.
In a sling configuration, attention must be paid to the distance between the two splices. For optimum strength realisation, Marlow recommend the minimum distance between splices of $35 x$ rope diameter.
A splice will normally increase the diameter of the rope between $1.5 x$ and $1.75 x$.
N.B. KNOTS WILL SIGNIFICANTLY REDUCE THE STRENGTH OF ANY ROPE. THIS PRODUCT WILL TYPICALLY RETAIN APPROXIMATELY 30\% OF ITS STRENGTH IF TERMINATED WITH A KNOT. THE EXACT FIGURE WILL DEPEND ON THE TYPE OF KNOT USED AND OTHER FACTORS.

Permanent elongation on first loading: Up to 5\%
Typical working elongation (for a bedded in rope):
@ 10\% of break load: 0.51\%
@ 20\% of break load: 0.89\%
To break: 3.60\%

Load / Extension

DYNALINE MAX SK78

DIAMETER		MASS		AVERAGE SPLICED STRENGTH							
mm	Inch	g / m	$\mathrm{lb} / 100 \mathrm{ft}$	kg	lb	kN	kg	lb	k MIN SPLICED STRENGTH		
5	$3 / 16$	15.6	1.05	3200	7050	31.4	2980	6560	29.2		
6	$7 / 32$	22.3	1.50	4570	10100	44.8	4250	9380	41.7		
7	$1 / 4$	35.6	2.39	7510	16600	73.7	6980	15400	68.5		
8	$5 / 16$	44.5	2.98	9390	20700	92.1	8730	19200	85.6		
9	$3 / 8$	54.0	3.62	10800	23800	106	10000	22100	98.1		
10	$13 / 32$	63.0	4.22	12600	27800	124	11700	25800	115		
11	$7 / 16$	75.5	5.06	15100	33300	148	14100	31000	138		
12	$15 / 32$	90.0	6.04	18000	39700	177	16700	36900	164		
13	$1 / 2$	107	7.18	21100	46600	207	19700	43400	193		
15	$9 / 16$	134	8.99	26400	58300	259	24600	54200	241		
17	$11 / 16$	184	12.3	32900	72400	323	30600	67400	300		

DYNALINE MAX SK99

DIAMETER		MASS			AVERAGE STRENGTH									MIN STRENGTH		
mm	Inch	g / m	$\mathrm{lb} / 100 \mathrm{ft}$	kg	lb	kN	kg	lb	kN							
5	$3 / 16$	15.6	1.05	3810	8380	37.4	3500	7710	34.4							
6	$7 / 32$	22.3	1.50	5440	12000	53.4	5010	11000	49.1							
7	$1 / 4$	35.6	2.39	8940	19700	87.7	8220	18100	80.7							
8	$5 / 16$	44.5	2.98	11200	24600	110	10300	22600	101							
9	$3 / 8$	54.0	3.62	12500	27500	123	11500	25300	113							
10	$13 / 32$	63.0	4.22	14600	32100	143	13400	29600	132							
11	$7 / 16$	75.5	5.06	17500	38600	172	16100	35500	158							
12	$15 / 32$	90.0	6.04	20900	45900	205	19200	42200	188							
13	$1 / 2$	107	7.18	24500	54000	241	22600	49600	221							
15	$9 / 16$	134	8.99	30700	67500	301	28200	62100	277							
17	$11 / 16$	184	12.34	38100	83800	374	35100	77100	344							

Disclaimer

